Effect of solution conductivity and electrode shape on the deposition of carbon nanotubes from solution using dielectrophoresis.
نویسندگان
چکیده
Dielectrophoresis (DEP) is a popular technique for fabricating carbon nanotube (CNT) devices. The electric current passing through the solution during DEP creates a temperature gradient, which results in electrothermal fluid flow because of the presence of the electric field. CNT solutions prepared with various methods can have different conductivities and the motion of the solution because of the electrothermal phenomenon can affect the DEP deposition differently in each case. We investigated the effect of this movement in solutions with various levels of conductivity through experiments as well as numerical modeling. Our results show that electrothermal motion in the solution can alter the deposition pattern of the nanotubes drastically for high conductivity solutions, while DEP remains the dominant force when a low conductivity (surfactant-free) solution is used. The extent of effectiveness of each force is discussed in the various cases and the fluid movement model is investigated using two- and three-dimensional finite element simulations.
منابع مشابه
High Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)
In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...
متن کاملMagnetic force microscopy using fabricated cobalt-coated carbon nanotubes probes
Magnetic force microscope ( MFM ) is a powerful technique for mapping the magnetic force gradient above the sample surface. Herein, single-wall carbon nanotubes (SWCNT) were used to fabricate MFM probe by dielectrophoresis method which is a reproducible and cost-effective technique. The effect of induced voltage on the deposition manner of carbon nanotubes (CNT) on the atomic force microscope (...
متن کاملEffect of Carbon Nanotube and Surfactant on Processing, Mechanical, Electrical and EMI-Shielding of Epoxy Composites
Dispersing nanoparticles in a polymer matrix is intrinsically challenging due to unfavorable entropic interactions between the matrix and the nanoparticle. In this research dispersion of nanoparticles in polymer matrix was studied and the effect of dispersion on properties was investigated. The properties of polymer composite depend on the type, size, shape, concentration of nanoparticles, and ...
متن کاملElectrochemical Sulfate Removal from Aqueous Solution Using Sandwich Panel Carbon Cloth Electrode by Steel Mesh: A laboratory study
Background and Objectives: Sulfate is one of the chemical pollutants in water that can cause adverse health effects such as digestive and blood problems at high concentrations in humans. Conversion of sulfate to substances such as hydrogen sulfide can corrode metal pipes. Therefore, the aim of this study was to investigate the effect of electrochemical sulfate removal using a sandwich panel car...
متن کاملThe effects of suspending medium on dielectrophoretic systems for separating and sorting carbon nanotubes
The separation of two different types of multi-walled carbon nanotubes is studied in a dielectrophoresis-based microchannel system in seven different solvents as the suspending medium. A simple model was developed to predict the behavior of the multi-walled carbon nanotubes in the above mentioned system. Then, the equations of motion for the multi-walled carbon nanotubes in that system were in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 23 49 شماره
صفحات -
تاریخ انتشار 2012